Salamander kauen mit dem Gaumen

Forschungsteam der Universitäten Jena und Massachusetts entdeckt urtümliches Kauverhalten bei Schwanzlurchen

„Triturus carnifex“ frisst alles, was er überwältigen kann. Auf seiner Speisekarte stehen Regenwürmer, Mückenlarven und Wasserflöhe, aber auch Schnecken, kleine Fische und sogar die eigenen Nachkommen. „Triturus carnifex“ – zu deutsch Alpen-Kammmolch oder Italienischer Kammmolch – ist ein Schwanzlurch und gehört zu den Echten Salamandern. Ein Forschungsteam um Dr. Egon Heiss von der Universität Jena hat jetzt das Kauverhalten des Molchs untersucht und dabei Erstaunliches festgestellt.

„Laut Lehrbuch verschlucken Amphibien ihre Beute unzerkaut, diese Ansicht konnten wir widerlegen“, sagt Dr. Egon Heiss. Gemeinsam mit dem Doktoranden Daniel Schwarz und Dr. Nicolai Konow von der University of Massachusetts konnte Heiss jetzt belegen, dass die Kammmolche ihre Beute tatsächlich kauen, jedoch anders als die meisten landlebenden Wirbeltiere. Ihre Ergebnisse haben die Forscher jetzt in der Fachzeitschrift „Journal of Experimental Biology“ veröffentlicht (doi: 10.1242/jeb.189886).

Gaumenzähne töten die Beute

„Diese Salamander nutzen ihre sogenannte Gaumenbezahnung, um die Beute zu töten und gleichzeitig aufzubrechen“, sagt Egon Heiss. Das heißt, die Kieferbezahnung dient vor allem dazu, die Beute zu fangen bzw. festzuhalten. Mit Hilfe der Zunge werden die Beutetiere dann rhythmisch gegen den Gaumen gerieben. Dort befinden sich sehr scharfe Zähne, die etwa 0,5 bis einen Millimeter lang sind und ständig nachwachsen. Diese Zähne reißen beispielsweise die extrem zähe Kutikula von Fliegenmaden auf: „Dadurch werden die Beutetiere getötet und gleichzeitig können Verdauungssekrete besser angreifen“, sagt Dr. Heiss. Für den Molch zugleich eine Lebensversicherung: Manche Insektenlarven haben so starke Beißwerkzeuge, dass sie sich damit durch den Leib des Jägers bohren könnten. Den ersten Anstoß für das verblüffende Forschungsergebnis gaben Beobachtungen von Nicolai Konow und Egon Heiss während eines Forschungsaufenthaltes in Antwerpen. Die Biologen beobachteten einen Molch bei der Nahrungsaufnahme und wunderten sich über dessen Kopf-, Kiefer- und Zungenbewegungen, nachdem er eine Beute aufgenommen hatte. „Der Molch schien tatsächlich zu kauen“, sagt Dr. Heiss. Klarheit brachte dann die Röntgenvideoanlage am Institut für Zoologie und Evolutionsforschung der Universität Jena.

Salamander kauen wie urtümliche Landwirbeltiere

Das Kauverhalten der Molche wirft die Frage auf, wie es sich mit Blick auf die Evolution erklären lässt. „Wir können davon ausgehen, dass echte Gaumenzähne beim gemeinsamen Vorfahren von Reptilien und Säugetieren vorhanden waren und wir vermuten, dass der Zunge-gegen-Gaumen-Kaumechanismus, wie wir ihn bei Molchen fanden, sehr ursprünglich für Landwirbeltiere ist“, sagt Heiss. Tatsächlich finden sich sehr ähnliche Kaumechanismen bei ursprünglichen Säugetieren wie Ameisenigel und Schnabeltier, aber auch bei Seekühen; auch wenn diese Tiere die Gaumenzähne mit rauen Keratinstrukturen ersetzt haben, reibt die Zunge immer noch die Nahrung gegen den Gaumen.

Die Zunge entstand mit dem Landgang der Wirbeltiere

In evolutionärer Hinsicht kam mit der Eroberung des Landes buchstäblich Bewegung in den Kauapparat der Tiere. Eine wichtige Rolle spielt dabei die Zunge, die sich erst mit dem Landgang der Wirbeltiere entwickelte. Sie ermöglicht überhaupt erst das Kauen, indem sie die Nahrung an die richtige Stelle transportiert. „Bei Fischen hilft hier die Wasserströmung“, so Egon Heiss. Ähnlich ist das bei Amphibienlarven und entsprechend wandelt sich der Kiemenapparat von Amphibien im Zuge der Metamorphose zu einem Zungenapparat, wenn die Larven das Wasser verlassen.

Die nun vorgestellten Ergebnisse sind erste Resultate des Forschungsprojekts „Form, Funktion und Evolution der Nahrungsmanipulation bei Urodela“, das von der Deutschen Forschungsgemeinschaft gefördert wird und Anfang 2017 gestartet wurde. Das Projekt läuft noch bis Ende 2019 und vielleicht lässt sich „Triturus carnifex“ bis dahin noch weitere Geheimnisse entlocken.

Werbeanzeigen

Alarm! Wie verletzte Pflanzenzellen ihre Nachbarn warnen

Alle Organismen können verletzt werden. Aber was passiert eigentlich, wenn eine Pflanze verletzt wird? Wie kann sie heilen und Infektionen vermeiden? Über die Mechanismen der Wundreaktion bei Pflanzen berichtet ein internationales Forschungsteam von der Universität Basel und der Universität Gent in der Fachzeitschrift «Science». Die Erkenntnisse über das pflanzliche Immunsystem kann für neue Ansätze im nachhaltigen Pflanzenbau genutzt werden.

Im Fall einer Verletzung reagieren Pflanzen mindestens genauso schnell wie Tiere und Menschen. Sie besitzen ein hochentwickeltes zelluläres Kommunikationssystem, das innerhalb von Sekunden Alarm schlägt. Dabei setzen die Pflanzenzellen ein spezifisches Hormon frei, um Prozesse der Wundheilung und Infektionsabwehr in Gang zu bringen. Als Modellpflanze diente in der vorliegenden Studie die sogenannte Ackerschmalwand, auch bekannt unter dem Namen Arabidopsis thaliana. Die Ergebnisse wurden von der Forschungsgruppe um Prof. Thomas Boller vom Fachbereich Botanik an der Universität Basel sowie Forschenden der Universität Gent, Belgien, erarbeitet.

Calcium-Welle aktiviert Wundhormon

Um die Wundreaktion der Modellpflanze besser zu verstehen, fokussierten die Forschenden einen kurzen Puls eines hochpräzisen Laserstrahls auf einzelne Wurzelzellen. Innerhalb von Sekunden löste diese lokale Verletzung einen starken Anstieg von Calcium-Ionen in den betroffenen Zellen aus. Diese «Calcium-Welle» führte wiederum zur Aktivierung eines proteinspaltenden Enzyms, der sogenannten «Metacaspase 4», welches in der Lage ist, ein Wundhormon aus dem Vorläuferprotein freizusetzen und so die Nachbarzellen zu alarmieren.

Dabei waren die Forschenden besonders überrascht, dass das Alarmsystem der Pflanze so schnell und spezifisch auf Verwundung reagiert. Doktorand Tim Hander aus dem Forschungsteam von Prof. Boller rechnete zunächst mit Viertelstunden, dann mit Minuten und schlussendlich mit Sekunden. Zur Überprüfung der Ergebnisse stellten die Forschenden weiterhin eine experimentelle Mutante der Pflanze her, der die Metacaspase 4 fehlte. Diese war nicht in der Lage, das Wundhormon zu produzieren und den Alarm an die Nachbarzellen weiterzugeben.

Erkenntnisse für nachhaltigen Pflanzenbau nutzen

Die Forschenden weisen darauf hin, dass die gewonnen Erkenntnisse zur Entwicklung neuer Ansätze im nachhaltigen Pflanzenbau dienen könnten. «Wenn man Alarmreaktionen besser versteht, dann lässt sich dieses Wissen nutzen, um Pflanzen effektiver vor Schädlingen zu schützen – indem man in der Pflanzenzüchtung daraufhin arbeitet, die Freisetzung des Wundhormons und seine Wahrnehmung durch die entsprechenden Rezeptoren zu verstärken», so Prof. Boller.

Herkömmliche Zuchtstrategien von Lebens- oder Futtermitteln priorisieren in der Regel Ertrag und Qualität in Kombination mit intensivem Pestizideinsatz, ohne das pflanzliche Immunsystem zu berücksichtigen. Mit der Identifizierung der Metacaspasen als essentiellen Katalysatoren einer effizienten natürlichen Abwehrreaktion entstehen potenziell neue Möglichkeiten für den Pflanzenbau.

Weltwassertag: Was machen eigentlich polare Stoffe im Trinkwasser?

Den Weltwassertag am 22. März nimmt die Hochschule Fresenius zum Anlass, auf den hohen Forschungsbedarf bei den so genannten polaren Stoffen hinzuweisen. Diese sind sehr gut wasserlöslich und können deshalb leicht in den Kreislauf des Wassers geraten. Prominente Vertreter sind Glyphosat oder auch der künstliche Süßstoff Acesulfam. Die Hochschule Fresenius selbst geht mit gutem Beispiel voran und nimmt an europäisch und national geförderten Forschungsprojekten teil.

„Polare Stoffe sind noch zu wenig erforscht. Mit gängigen analytischen Methoden können sie gar nicht nachgewiesen werden”, sagt Daniel Zahn, Doktorand von Prof. Dr. Thomas Knepper, der Direktor am Institute for Analytical Research (IFAR) an der Hochschule Fresenius ist. „Viele sind noch nicht identifiziert und bei denen, die wir bereits kennen, haben wir meist lediglich Anhaltspunkte für deren Bewertung. Auf dieser Basis ist eine Vorhersage der Langzeitwirkung nicht möglich. Das ist aber zur Einschätzung möglicher Risiken unabdingbar.“ Was bekannt ist: Sie sind sehr gut wasserlöslich und dabei teilweise schwer abbaubar, wodurch sie die vielen Schutzbarrieren in Wasserkreisläufen – wie zum Beispiel Kläranlagen – überwinden und somit bis ins Leitungswasser gelangen können. Sie können sich schnell weit verbreiten und in erhöhten Konzentrationen vorkommen. „Keinesfalls möchten wir Panik verbreiten und die aktuelle Faktenlage deutet auch nicht darauf hin, dass eine Bedrohung besteht. Aber aus unserer Sicht ist eine Erhebung weiterer Daten unerlässlich um sicherzustellen, dass keine Gefährdung besteht – beziehungsweise, um geeignete Aufbereitungstechniken zu entwickeln und zu implementieren“, erläutert Zahn.

Das IFAR befasst sich seit 2013 im Rahmen verschiedener Forschungsprojekte mit dem Thema. Eines davon mit dem Namen „PROMOTE“ (Protecting Water Resources from Mobile Trace Chemicals) ist bereits abgeschlossen. Es diente der Ermittlung und Identifizierung polarer Stoffe – und damit der Schaffung notwendiger Grundlagen für weitere Nachforschungen. Dabei wurde beispielsweise mit der Trifluormethansulfonsäure ein bisher wenig beachteter polarer Stoff erstmals im Trinkwasser nachgewiesen. Anhaltspunkte für irgendeine Gefährdung haben sich nicht gezeigt. Jetzt hat die Hochschule Fresenius gerade mit ihren Partnern das Nachfolgeprojekt „PROTECT“ in Angriff genommen. Mit dem Namen wird der Projekttitel „Perresistente mobile Organische Chemikalien in der aquatischen Umwelt: Quellen, Vorkommen, Technische Möglichkeiten zu deren Entfernung in der Trinkwasseraufbereitung“ abgekürzt. Der Startschuss fiel am 1. Februar dieses Jahres, erste Ergebnisse werden 2022 erwartet. Hier stehen nun Vorkommen, Mengen und vor allem mögliche Risiken und Folgen im Fokus der Wissenschaftler. „Mit den Resultaten aus diesem Forschungsprojekt hoffen wir ein klareres Bild über polare Stoffe im Wasser zu erhalten und auf die wichtigen Fragen nach Wirkung und Verbreitung klare Antworten geben zu können“, so Zahn.